• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Emerging Scholars Blog

InterVarsity's Emerging Scholars Network

DONATE
  • Home
  • About Us
    • About Our Bloggers
    • ESN Writing Inquiries
    • Commenting Policy
  • Reading Lists
  • Scholar’s Compass
    • Scholar’s Compass Discussion Guide
    • Scholar’s Compass Posts
    • Scholar’s Compass Booklet
  • Connect
    • Membership
    • Events
    • Donate
    • Contact Us
Home » Science Corner: More than Three Chromosomes in a Trench Coat

Science Corner: More than Three Chromosomes in a Trench Coat

October 20, 2021 by Julie Reynolds Leave a Comment

A DNA Muppet Man! (Artwork © Alison Reynolds an up-and-coming graphic designer from central Ohio; used with permission.)

As promised, bugologist Julie Reynolds has blessed us with a guest post this week, the first in a four-part series on how our biology is more than just our genes. Or, as she so colorfully puts it, we are more than just a few chromosomes in a trench coat, no matter how charming an image that may be. I hope you enjoy this post as much as I did, and then come back next week for part two. -Andy

“So God created great sea creatures and every living thing that scurries and swarms in the water, and every sort of bird–each producing offspring of the same kind. And God saw that it was good.” Genesis 1:21 (NLT)

In the recent past, Andy shared interesting and valuable information about how genomes can evolve and become more complex with his “Quandary Den” simulations and the rest of his “Let’s Learn Evolutionary Biology Together” series. These are great discussions about Evolution and genome complexity, but understanding life as we know it requires additional conversations about complexity. Living bodies (plants, animals, fungi, and bacteria — oh my!) are more than chromosomes running around naked (viruses are, but that’s a whole different can of worms). And they are more complex even than multiple chromosomes in a trench coat. Rather each living thing is the result of complex interactions between its genotype (a.k.a. chromosomes or genome) and the environment working together to create a phenotype.

To put it simply, a phenotype is the collection of observable traits that define an individual. For plants, the phenotype includes leaf shape, flower size and color, seed shape, and the secondary chemicals they produce. Some characteristics that make up the phenotype of animals include skin and/or hair color, eye color, blood type, height, shoe size, and basal metabolic rate (how fast your body burns calories when you are sitting on the couch). The phenotype also includes the types of environments where an organism can live. Whales live in the water, but gorillas cannot survive in that environment. At the extreme end, the petroleum fly (a.k.a. Helaeomyia petrolei) thrives feeding off dead insects that get trapped in naturally occurring petroleum pools. These flies ingest the petroleum, which is highly toxic to other insects, to collect the arthropods that were trapped in it.1 In the plant world, a cactus’s phenotype allows it to live in extremely dry environments while alligator weed (Alternanthera philoxeroides) and water hyacinth (Eichhornia crassipes) only survive in water.

So, what creates a phenotype from a genome? This is something that scientists are very interested in understanding. Indeed, a key focus of my own research is discovering how insect phenotypes allow them to live almost anywhere on Earth. I study these things, not only because learning about living things is one way I worship God, but also because understanding why and how certain phenotypes come from a genome is important for caring for everything that makes up God’s Creation. In particular, understanding how a phenotype develops from a genome and how can be changed through interactions with the environment necessary for developing cancer treatments, developing new antibiotics, controlling insects that spread diseases, and understanding how living things will respond to the ever-changing climate.

Now that we have defined a phenotype and discussed why understanding how they develop is important, we are ready to take a deep dive into a discussion of some of the mechanics of developing a phenotype from a genome, including epigenetic processes that can make a phenotype plastic rather than set in concrete. We will also look at how phenotypic plasticity, or the ability to create multiple phenotypes from a single genome, can help populations of living things survive changes in the environment. Stay tuned for the next installment!


 

Julie Reynolds
Julie Reynolds

Dr. Julie A. Reynolds is a Research Scientist at The Ohio State University in the department of Evolution, Ecology, and Organismal Biology. She studies insect physiology and biochemistry with the goal of learning how animals adapt to extreme environments and survive changes in climate. In addition to writing for the Emerging Scholars Network, she is actively engages in discussions about science and faith as a Sinai and Synapses Fellow.

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • More
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Pinterest (Opens in new window) Pinterest

Filed Under: Science and Faith Tagged With: entomology, Julie Reynolds, phenotypic plasticity, science, science corner

Reader Interactions

Leave a ReplyCancel reply

Primary Sidebar

Become a Member

Membership is Free. Sign up and receive our monthly newsletter and access ESN member benefits.

Join ESN Today

Scholar’s Compass Booklet

Scholar's Compass Booklet

Click here to get your copy

Top Posts

  • Rest and Flourishing: ESN Weekly Summer Readings for Faculty (Small Group or Individual)
  • Rest and Growth: ESN Weekly Summer Readings for Grad Students (Small Group or Individual)
  • Faith and Reason, Part 2: Augustine
  • A Prayer for Those Finishing a Semester
  • The Message of Genesis 1

Facebook Posts

Facebook Posts

Footer

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Recent Posts

  • Encouraging One Another
  • Science Corner: Grandmother, What Grey Fur You Have
  • ESN Conversation: Nailing It

Article Categories

Footer Logo
© 2025 InterVarsity Christian Fellowship/USA®. All rights reserved.
InterVarsity, InterVarsity Christian Fellowship/USA, and the InterVarsity logo are trademarks of InterVarsity Christian Fellowship/USA and its affiliated companies.

Member of the International Fellowship of Evangelical Students

Privacy Policy | Terms of Use | Contact Us